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Development Standards & Practices Used 

In this project we will not be designing or implementing circuits or hardware, 

therefore all standards and practices will be software focused. Specifically, for 

this project we will be using practices such as object-oriented programming as 

well as the following IEEE standards for software development best practices: 

• IEEE Std 1063, Standard for Software User Documentation 

• IEEE Std 829 –2008, Standard for Software Test Documentation 

• IEEE Std 830-1998, Recommended Practice for Software Requirements 

Specifications 

• IEEE Std 1012, Standard for Software Verification and Validation 

 

Summary of Requirements 

• Speech-to-text for television and radio recordings 

o Process recording files to extract text from audio. 

o Store text in searchable keyword/phrase database table(s) 

o Store errors into separate database tables for logging purposes 

• Video-to-text for television frames 

o Perform optical character recognition on text in television frames 

o Store text in searchable keyword/phrase database table(s) 

o Store errors into separate database tables for logging purposes 

 

Applicable Courses from Iowa State University Curriculum  

• Com S 228 – Data Structures and Algorithms 

• Com S 309 – Software Development Practices 

• S E 339 – Software Architecture 

• Com S 363 – Introduction to Database Management Systems 

Executive Summary 



 

• S E 417 – Software Testing 

• Com S 575 – Computational Perception 

New Skills/Knowledge acquired that was not taught in courses 

In addition to the listed courses, this project required us to familiarize ourselves 

with topics such as audio manipulation, signal processing, optical character 

recognition, and containerization of microservices.  
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1 Introduction 

1.1 ACKNOWLEDGEMENT  

Our team would like to express our sincere gratitude to Bob Shapiro, Henry Bremers, and the team 
over at DigiClips for their continuous support of our project’s research and implementation. Their 
constant encouragement, insightful comments, and hard questions have helped us create a better 
product that will aid them in providing a more rounded experience for their client base. 

We would also like to thank our faculty advisor, Ashfaq Khokhar, for the constant support through 
the project and for the insightful recommendations. His expertise in data intensive multimedia 
applications and knowledge of signal and audio processing proved valuable on multiple occasions 
throughout the tenure of our project.    

1.2 PROBLEM AND PROJECT STATEMENT 

DigiClips, Inc. is a media content analysis company that records and extracts data from diverse 
types of media, such as television and radio, and stores this information in a searchable format. It 
aims to provide its clients a user interface that would facilitate searching of the database for 
keywords or phrases of user’s interest uttered in audio or video clips.  For example, a client may be 
interested in finding if their company name has been mentioned (along with its frequency) on 
television or radio within a given time frame.  

General problem statement - The data currently being extracted from the television recordings is 
from the television network-provided closed captions only. This closed captions data often misses 
words or phrases spoken within the broadcast, causing a disconnect between the actual content of 
the broadcast and the searchable content provided. In addition to missed audio, closed caption 
data does not provide any means of searching the content of broadcasted frames themselves, where 
there is often visible text that denotes the current segment of news, breaking stories, etc. This 
information is currently lost within hours of recordings and extremely difficult to perform searches 
on. 

Proposed Solution - This project will investigate existing solutions and develop efficient speech-

to-text and video-to-text modules that will take television and radio recordings as its inputs and 

record the timestamp-location of keywords and phrases of interest in these recordings.  The 

outputs of these modules will be organized for ease of use in a database system. The speech-to-text 

and video-to-text extraction capability will give the company an edge in the industry by granting 

them access to data that is currently not being tracked, providing more opportunities for clients to 

find any and all mentions of their desired keywords. The focus will be to develop near-real-time 

solutions that can scale with the number of audio and video recording streams. These modules will 

be integrated with other components in the system that include signal processing applications, 

databases, query and retrieval frameworks, and user-interfaces. 

1.3 OPERATIONAL ENVIRONMENT 

The operational environment of our project is simply a computer based in an office environment. 
The specific computer that our application will be running on is a custom-built system running 
Ubuntu 18.04. In terms of processing power, this computer boasts a very powerful AMD Ryzen 9 
5900X CPU alongside an NVIDIA GeForce 210 GPU for minor graphics-based computations. The 
computer running our code will not be exposed to extreme temperatures or conditions thus the 
project will not be considering preventative measures for these anomalies. 



 

1.4 REQUIREMENTS 

• Functional Requirements 

o Speech-to-text system  

▪ Must be able to convert audio streams of spoken words into plain text. 
▪ Must accept mono and stereo audio recordings as input, processing all 

streams into their own results feed. 
o Video-to-text 

▪ System must detect multiple fonts/styles of text in video frames. 
▪ System must process text located within the entirety of the recording’s 

frames. 
o Output formatting 

▪ All system results must be processed to check for correct grammar and 
spelling. 

▪ Results should be indexed via their corresponding timestamp in the 
video/recording. 

▪ System errors should be traceable and identifiable for maintainability. 
▪ System errors must be caught and returned to the original requesting 

service 

• Non-Functional Requirements 

o System shall be built without utilizing any costly APIs/cloud resources. 
o System shall be built with documentation to explain usage and integration. 
o System should scale with the assumed amount of data present. 
o System should reliably output results within a reasonable timeframe. 

 

1.5 ENGINEERING CONSTRAINTS 

• Cannot utilize paid APIs for speech-to-text or optical character recognition 

• Developed program must be able to run on an underpowered computer 

• System must reliably output within the timespan of the input audio/video 

1.6 INTENDED USERS AND USES 

The intended users of this project are Bob Shapiro, Henry Bremers, and the DigiClips Media Search 

Engine. Bob Shapiro is the chairman of DigiClips Media Incorporated. Henry Bremers is the Senior 

Software Engineer in charge of managing DigiClips software. The DigiClips Media Search Engine is 

a front-end application that will be operated by DigiClips customers and clients and will be 

utilizing data produced by the project system. 

1.7 ASSUMPTIONS AND LIMITATIONS 

Assumptions: 

• The program will only be processing up to 10 broadcast television channels. 

• The program will be operating on new recordings as they are recorded rather than 

previously recorded broadcasts. 



 

• The inputted television recordings will be of high resolution and high enough audio quality 

for accurate processing and output. 

• The resulting program output will match the same database schema as the currently stored 

closed captions. 

 

Limitations: 

• Due to budget constraints, we are not able to utilize certain paid APIs for speech-to-text or 

optical character recognition. 

• Our developed system must be computationally efficient and able to run on a relatively 

underpowered computer. 

• The program must be able to operate quickly enough for customers to query data within 24 

hours of recording. 

1.8 EXPECTED END PRODUCT AND DELIVERABLES 

The expected end product is a pipeline through which television and radio recordings will be 

processed to extract searchable data in the form of keywords and phrases spoken or visible through 

text in the video frames. As part of this end product, this pipeline must include a speech-to-text 

system and what we refer to as a video-to-text system which extracts words, letters, and numbers 

from the image frames of the recording.  

The speech-to-text system must process audio identified as human speech into plain text phrases 

and keywords that, along with the timestamp of the spoken phrase, will be made searchable as part 

of a database. The system must be able to work with audio that comes from television and/or radio 

recordings performed by the current DigiClips recording backend.  

Similarly, the video-to-text system will identify and process any words, standalone letters, and 

numbers that may be present within a given frame of the recording into searchable plain text 

words/phrases associated with the timestamp they were displayed in the recording to a searchable 

database to be used by the DigiClips front-end search engine service. The provided input to this 

system will be video recordings of television locally stored or frames of television passed through 

the pipeline as they are being captured/recorded. 

These deliverables that make up the end product will be developed, thoroughly tested, and ready 

for integration into the existing DigiClips television recording backend by the project end date in 

December 2021. 

2 Project Plan 

2.1 TASK DECOMPOSITION 

• Build speech-to-text system. 

o Planning 

▪ Determine what speech-to-text functionality is already present within the 

DigiClips codebase. 



 

▪ Research possible techniques for implementing speech-to-text using 

existing software. 

o Design 

▪ Outline possible speech-to-text system structure using planning and 

research. 

▪ Collectively decide which outline is the most effective at meeting the 

problem requirements. 

o Development 

▪ Using the selected design develop the speech-to-text system as outlined in 

the Design phase. 

o Testing 

▪ Test the implementation to ensure the given requirements have been met. 

▪ Have our intended users test and report feedback on the project 

implementation. 

• Build video-to-text system. 

o Planning 

▪ Determine what video-to-text functionality currently exists in DigiClips 

software. 

▪ Research video-to-text processing to find pre-processing techniques and 

libraries ideal for the project 

o Design 

▪ Build rough outlines of possible system structures. 

▪ Decide on which structure solves the problem most effectively. 

o Development 

▪ Using the chosen design, build the implementation according to the 

proposed structure. 

o Testing 

▪ Rigorous testing of the implementation to ensure requirements have been 

met. 

▪ Receive feedback from our intended users on the state of the 

implementation and make sure their requirements are met. 

• Integrate speech-to-text and video-to-text. 

o Take completed speech-to-text and video-to-text systems and integrate them 

together to ensure ease of use for the user. 

2.2 RISKS AND RISK MANAGEMENT/MITIGATION 

• Speech-to-text task 

o Speech-to-text processing will not be accurate enough to provide substantial value 

to the DigiClips business. 

▪ Probability: 0.2 

▪ Risk Mitigation Plan: 

• To mitigate this risk, we put extra care into researching our 

speech-to-text system. We have seen good accuracy results using 

Mozilla’s DeepSpeech engine which we utilized for our speech-to-

text processing.  

 



 

• Video-to-text task 

o Video-to-text system will be too processor intensive to be a realistic solution to 

DigiClips’ problem. 

▪ Probability: 0.5 

▪ Risk mitigation plan: 

• Extra time will be spent in the planning and design phases of this 

task to ensure that we consider the limitations of processing large 

amounts of video data. In particular, our designed system only 

processes a certain number of frames from each input video, i.e. 

processes a frame once every 0.5 seconds since the likelihood of 

text being visible for mere fractions of a second is unlikely. 

o System misidentifies words making it too inaccurate to be useful. 

▪ Probability: 0.5 

▪ Risk mitigation plan: 

• To mitigate this risk, we set up multiple output filtering layers 

that help to ensure that the data captured by the video-to-text 

service is useful data. These steps are detailed further in Section 5: 

Implementation. 

• Integration task 

o The primary risk is that the speech-to-text and video-to-text systems won’t 

integrate easily when being developed separately. 

▪ Probability: 0.5 

▪ Risk mitigation plan: 

• During the design phase we made the decision to approach 

containerizing our different services, which lets their integration 

go much smoother. This essentially allows each service to work on 

its own, and the only integration needed between the two 

processing services is a driver microservice to connect them, 

which can be performed with HTTP requests to also alleviate 

integration issues. 

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Milestones: 

• Complete the speech-to-text system. 

• Complete the video-to-text system. 

• Integrate speech-to-text and video-to-text on one complete program. 

• Document and test software to prepare for integration on DigiClips’ systems. 

Evaluation criteria: 

• Achieve 80% accuracy on speech recognition and 95% coverage with microservice unit 

testing.  

• Achieve 70% accuracy on video text recognition and 95% coverage with microservice unit 

testing.  

• Process the speech-to-text for a video file within 75% of the file's length. 

• Process the video-to-text for a video file within the length file.  



 

2.4 PROJECT TIMELINE/SCHEDULE 

Proposed Project Schedule: 

 

Figure 1: Project Plan 

2.5 PROJECT TRACKING PROCEDURES 

We plan to use multiple methods of tracking our project progress. Our main source of tracking 

progress will be GitHub as that is where the current codebase resides, and so when pushing to our 

repository we can see what was added, removed, or modified. We also plan to use communication 

channels like group messaging to ensure everyone is up to date with the current state of the 

project. Finally, we plan to have constant communication with our group as a whole and taking 

notes to have a better understanding of what should be expected. 

 

2.6 PERSONNEL EFFORT REQUIREMENTS 

Table 1: Estimated Time  

Task Estimated person-hours required. 

Speech-to-text system 70 hours 

Video-to-text system 100 hours 

System integration 30 hours 

2.7 OTHER RESOURCE REQUIREMENTS 

We will not require any physical resources to complete this project. In terms of digital resources, 

we will need access to the existing code that DigiClips has pertaining to speech-to-text and video-

to-text. We will also need access to the DigiClips systems and backend code. This will ensure that 

we are able to integrate our solution with the rest of the DigiClips Media Search Engine.  

2.8 FINANCIAL REQUIREMENTS 

The only financial requirement we have for this project is that our application should not use paid 
libraries or APIs. Our project will make use of free, open-source software.  



 

3 Design 

3.1 PREVIOUS WORK AND LITERATURE 

The idea of speech-to-text and video-to-text are not novel ideas, and many libraries and interfaces 

exist to perform these actions on multimedia recordings. Additionally, other groups have created 

similar applications for recording and pulling text specifically from television and radio stations.  

Detailed in his Forbes article, Kalev Leetaru describes the process of using Google’s speech-to-text 

API alongside natural language processing on television recordings to thematically analyze the 

segments of television. In this project, Leetaru mentions using the Google Cloud Speech-to-Text 

transcription to automatically generate a transcript for the video (Leetaru, 2019). In our research on 

the available APIs for speech-to-text we discovered that Google’s implementation is considered as 

one of the top-of-the-line speech-to-text solutions currently available, especially when you consider 

its built-in grammar and spell checking alongside many other pre- and post-processing features 

that make the output into clear, accurate sentences and phrases. Unfortunately for our project, 

Google’s speech-to-text solution requires payment, leaving us to try and implement a lot of its 

functionality on our own. Our project aims to differentiate from Leetaru and Google’s work 

primarily through the application of the resulting data. Rather than post-processing the data 

through natural language processing, we will be focused on formatting the resulting data to make 

indexed, query-able phrases stored in a database table.  

Similar to Leetaru’s implementation of speech-to-text for television, other groups have considered 

and possibly developed solutions for extracting speech data from multimedia sources. As seen in 

their granted U.S. Patent, Daniel Barcy and Charles Statkus propose an implementation for 

extracting human-readable captioning for television and radio streams (United States of America 

Patent No. US6542200B1, 2001). In their design, an application runs using a live feed of television or 

radio audio and processes the audio input for gain control, audio filters, and finally into a speech-

to-text converter that performs the data extraction. Their design also makes considerations for 

language translation processing, which they would perform on the direct output of the speech-to-

text converter. A key difference between our proposed implementation and the one shown in the 

patent is the source of the audio input. In their design, the input is processed as a live feed, whereas 

in our implementation, we will be processing audio files after they have been recorded into a 

standard video format. This will integrate more smoothly with DigiClips existing television and 

radio recording systems and require less interference with their current applications.  

Regarding video-to-text, one notable previous implementation comes from a team of researchers at 

University of Novi Sad, Serbia, discuss their implementation of using optical character recognition 

(OCR) on frames of television recordings. Their implemented system receives a frame as part of a 

live television feed, performs some image pre-processing including locating potential text, then 

processes those possible regions using an OCR solution. The output from the OCR solution is then 

used to verify the functionality of the television set as a means of testing hardware or software 

faults within the device. This implementation of OCR technology is very similar to our proposed 

design, since we will be attempting to locate text within each frame prior to OCR processing, which 

will greatly speed up our application and reduce the overall workload for our system. However, a 

few key differences in the implementation again stem from the input type and output formatting. 

In our application, we will be accessing frames of a television recording rather than grabbing 



 

frames from a live feed. Additionally, our application will be focused on making timestamp-

indexed, query-able, phrases stored in a database table. 

Lastly, some previous speech-to-text and video-to-text work has been made by other senior design 

teams for DigiClips. After some research and analysis of these previous implementations, we have 

found that the currently existing speech-to-text system is suffering from low accuracy while the 

currently existing video-to-text system suffers from extremely high processing times as well as low 

accuracy and consistency. Nevertheless, this existing work has the benefit of providing a point that 

we can work off rather than building from the ground up, as some parts of this project will already 

have a basic implementation. However, given our proposed architectural changes and our choice of 

processing libraries, for the most part we feel that this previously existing solution will not lend us 

much help, especially since it is not well documented. 

3.2 DESIGN THINKING 

We had performed decision making when considering and defining what data DigiClips is currently 

missing from their recorded channels. After discussing with Bob and Henry, who pointed out that a 

lot of data gets lost from text that is not necessarily spoken but appears on screen as a scrolling bar 

or other display, users would almost certainly want to be able to search for that text as it contains 

news updates, so we decided to add the video-to-text into our scope. 

In addition to the speech-to-text and video-to-text, we had also generated the idea of lip-reading to 

text, where watching lip patterns to provide text as well. In the case of lip-reading to text we felt 

that this task was not very feasible due to technological limitations. Getting accurate text results 

from reading lips in a video is an immensely challenging task that likely would have accuracy 

issues. Rather than attempting to do something like this we have decided to focus on speech-to-

text because it is a simpler task that fulfills the same goal. Having a good speech-to-text system 

would replace the need for a lip-reading system. 

During the ideate phase of our design thinking process we came up with some design decisions 

that we ended up not going with due to limitations. Primarily, using paid APIs and services to 

achieve our goals. For example, Google has a high-quality speech recognition API that would work 

great for our use case. However, this is a service that requires payment. For the standard speech-to-

text service it is $0.006 / 15 seconds of audio. Running eight television channels through this 

constantly for a month would rack up charges close to $8,600. This kind of pricing model is not 

feasible for DigiClips to consider due to how much television and radio they constantly record.  

Another decision we made during our design thinking process was related to programming 

languages. Initially, we thought that C or C++ might be the best for this kind of application. 

However, upon further research, it became clear that Python seems to have the most up-to-date 

and well-maintained libraries when doing optical character recognition and speech recognition. 

Using C or C++ would likely provide us with faster processing times, but libraries to perform this 

kind of analysis aren’t as available as Python and would require much more strenuous integration. 

3.3 PROPOSED DESIGN 

The first method of solving this problem that we came up with was to use C or C++ to develop an 

app that performs Optical Character Recognition (OCR) and speech recognition on video files. We 

initially thought to use C or C++ because of the speed that those languages offer. Having extra 



 

speed and efficiency would give our application an edge since DigiClips has a massive amount of 

data to analyze. Eventually, we discovered that there are not many libraries for OCR and speech 

recognition written for C and C++. There are some options, but they are difficult to use, not well 

supported, and not user-friendly.  

Once we realized that C or C++ might not be a viable choice, we investigated possibly using Java. 

We were a bit hesitant to try Java because it is known to be much slower than other languages due 

to its built-in garbage collection and inefficient data access. However, there is a well-supported 

speech recognition library, CMUSphinx, designed to be used in Java. We found that using this 

library to perform speech recognition was effective at fulfilling the speech-to-text part of our 

project's requirements.   

At this point, we had already found that Java was not a good choice for the video-to-text portion of 

our project, so we began to consider using a microservice-based architecture. Since speech-to-text 

implementation in Java worked well, we could run speech-to-text in Java and video-to-text in 

another language. This design would utilize one of the primary benefits of using microservices, 

simple communication between different programming languages.  

Next, we investigated using Python since our team had already done some work using Python's 

popular OCR software, Tesseract. Python seemed like a viable choice for doing the video-to-text 

portion of our project. In our research, we saw a speech recognition library developed by Mozilla 

called DeepSpeech. This library seemed like a viable choice because it is open-source and well 

maintained, so we set it up and tried it out with some of our sample data. After some initial testing, 

we realized that DeepSpeech had a similar level of accuracy when compared to CMUSphinx and 

was over twice as fast. This discovery made DeepSpeech the obvious choice to ensure our 

application is as efficient as possible. 

At this point, we have decided on using Python both for our video-to-text system and for our 

speech-to-text system. These two systems must be as efficient as we can make them, so we must 

take care when designing their functionality and their interactions. We have also decided that a 

microservice architecture will be an effective solution to this problem because it is flexible and 

resilient to crashes that could hamper DigiClips' business model. Also, using existing REST API 

technology allows for requests to be made to each service in parallel. Parallel processing using 

REST API technology will enable DigiClips to keep up with incoming data without complex process 

management systems. 

This design for our application will have three different services that will interact with one another: 

a central driver service, a speech-to-text service, and a video-to-text service. First, the central driver 

service will process each request as they come in, sending the audio to the speech-to-text service 

and the video to the video-to-text service. Then, the speech-to-text service will process the audio of 

the video clip to detect speech while the video-to-text service will process frames of the video clip 

to find text. Lastly, once the driver receives the results from both sub-services, the data will be 

returned to the service that made the request. 

This project design will capture all the necessary processing into one application to streamline 

extracting data from the video files that DigiClips collects.  



 

3.4 TECHNOLOGY CONSIDERATIONS 

The current limitations are mainly on the computers used to run the programs that will be written. 

Video-to-text is a taxing process, and the CPU can only handle so much, so checking the entire 

video frame every frame would severely limit performance. In addition, the CPU must also handle 

the recording of the normal speech-to-text which also is rather intensive, though not as much as 

video-to-text. Performing both would be too much to handle, and so limiting frames and frame 

sizes will be needed. 

Possible alternatives would be to attempt code optimization and reduce the code as much as 

possible while still performing the same job. Removing unnecessary functions and rewriting 

inefficient code may help lessen the burden these processes carry. As well, it may show that the 

current computer strength is limited, and in need of an upgrade. A newer computer, or adding 

another device, would help to split the load. Otherwise, we will need to decide how to limit our 

code to run smoothly. 

We know that the computer that our application will likely run on has a Ryzen 9 5900X 12-core 

CPU. This is a very high-end CPU and will give us a substantial amount of processing power to 

work with. That computer also has a Nvidia GeForce 210 GPU. This is unfortunate because this GPU 

is low-end and does not offer much processing power. GPU processing is something that can make 

a significant difference in the kind of calculations we will be doing in both speech-to-text and 

video-to-text. Thus, we must take the lack of an effective GPU into consideration when designing 

our application.  

3.5 DESIGN ANALYSIS 

At the completion of our project, we find that our proposed design has been reasonably successful 

at fulfilling our speech-to-text and video-to-text goals. The proposed microservice architecture has 

been completely implemented at this point along with additional containerization features, and the 

video-to-text and speech-to-text systems are functioning as standalone services that can be bridged 

using the developed driver microservice. Now, we are focused around finding the best way to 

perform the speech-to-text and video-to-text.  

In terms of the speech-to-text system, we have opted to split each audio file into chunks and 

process each chunk separately as an option to increase the efficiency and accuracy. Also, we are 

utilizing several different grammar and punctuation libraries to ensure our speech-to-text output is 

as readable as possible. 

We maintain that the proposed iteration of our design is effective for several reasons. Firstly, the 

design is functional and capable of producing the results we wish to acquire, as seen throughout 

our rounds of design testing where we implemented a barebones system and compared the output 

to our expected result. Secondly, the design is maintainable. We have documented the code itself, 

usage procedures, and ensured that as much information as possible is given about our program so 

that DigiClips lead Software Engineer or other student groups can easily and quickly modify or 

implement our solution. Our design also makes use of API calls which are easy to swap in and out 

should a better API solution be developed. Finally, the components which we are still evaluating 

design effectiveness on are reliability and feasibility. In terms of reliability, we are confident that 

our system is able to handle the expected amount of traffic based on our extensive testing of 

program runtime, however we have been unable to generate the same amount of traffic our system 



 

will be potentially expected to maintain as we do not have full access to the television and radio 

recording devices at DigiClips. In terms of feasibility, our initial concern with the design was 

primarily focusing on the selection of a speech-to-text and optical character recognition API. While 

accurate, free, open-source models are difficult to come by, we believe that our choices of 

DeepSpeech and Tesseract OCR have proven to be accurate and reliable options for the data-

intensive processing that our solution requires. 

3.6 DEVELOPMENT PROCESS 

We attempted to utilize Agile programming techniques to work on our project. To further this, we 

strove to work on our project using Feature Driven Development (FDD) techniques. We wanted to 

work in small pieces, have those pieces working as intended, then work on using those pieces to 

create larger parts and connect them all together. This made sure that the basic components 

worked, and that connecting the components was made easier. As an example of this FDD, in 

developing the speech-to-text engine we went through several stages to ensure that we can extract 

audio from a given video file, then utilizing this extraction process to split the audio into chunks 

before passing into DeepSpeech, and so on. This allowed us to work on our application piece by 

piece and more quickly detect issues with newly written code, since many of the previous functions 

could be assumed to be working given that they had been previously tested.   



 

3.7 DESIGN PLAN 

We ended up having a few different services that interact with each other to perform the necessary 

functions. Here is the proposed microservice structure: 

 

Figure 2: Microservice Structure 

Driver Microservice 

The entry point to this pipeline is through the Driver Microservice. HTTP POST Requests are made 

to an endpoint of this service. A file path is needed in the body of a request to supply a file to 

analyze. The Driver Microservice will process the file at the given path to prepare it for processing 

by the Speech-to-text Microservice and the Video-to-text Microservice, including verifying that the 

file exists, is of the correct type, and more. The Microservice is responsible for delegating the 

provided file to the sub-services based on its file type. For example, a video file can be passed to 

both sub-services while an audio file can only be passed to the speech-to-text service since there is 

no image data to process for the video-to-text. Finally, the path to the input file will be passed to 

the Speech-to-text Microservice and Video-to-text Microservice, at which point the Driver 

Microservice will wait for the results of both sub-services before responding to the original POST 

request. 

 



 

Speech-to-text Microservice 

Requests made to the Speech-to-text Microservice will be GET requests with a URL parameter 

containing the path to the audio file. The microservice will process this file to extract audio from 

the given file, split the resulting audio into chunks, then process text from the audio chunks. The 

extracted text will be formatted with JSON containing tags that identify the timestamp for each 

piece of text. This JSON will be sent back to the Driver Microservice. 

Video-to-text Microservice 

Requests made to the Video-to-text Microservice will be GET requests with a URL parameter 

containing the path to the video file that needs to be analyzed. The microservice will analyze 

frames of the given video, looking for text on the screen. This text will be extracted from the image 

frames. The microservice will return the extracted text within formatted JSON containing tags that 

identify the timestamp for each piece of text located in the video. The resulting processed JSON 

will be checked for grammar inconsistencies, then returned to the Driver Microservice to package 

and return to the original POST request. 

4 Testing 

Testing is an integral part of any project, as results from testing provide good feedback for 

improvement and give metrics to base future decisions off of. Through our use of testing, we are 

able to understand and refine how our program works.  

4.1 UNIT TESTING 

Unit tests were originally used in the determination of what type of speech-to-text and video-to-

text libraries or tools to use for this project. Simple tests were created using single words or 

phrases, or single frames of shows, in order to determine which program was most accurate in 

transcribing. Once the decisions were made as to which program should be used for these 

transcriptions, unit testing then was lessened and attention was turned towards acceptance testing.  

4.2 INTERFACE TESTING 

Interface testing was to be used in making sure the microservice architecture we had created would 

be smoothly ran on the DigiClips machines without issue. This was made infinitely easier upon the 

use of Docker containers, which did a lot of the heavy lifting in assuring compatibility. By switching 

to a Docker container, we can rest easy knowing that there will be compatibility between our 

machines and theirs. Not only does this make maintainability much easier, but it also means that 

there needs to be little in ways of interface testing, since as long as Docker is able to be ran on their 

machine, then they can run our programs without any issue, as all dependencies, services, and 

other compatibility points are taken care of within the Docker container.  

4.3 ACCEPTANCE TESTING 

The acceptance testing then became the primary concern, as once the basic decisions have been 

made and the path has been laid out, it comes down to making sure that the metrics are within 

what is expected of our program. In order to provide these metrics, a testbench has been set up to 

compare a human-transcribed text document with the programmatically-generated text. The main 



 

comparison points to look at are the wordcounts of each, the unaltered accuracy ratio, the case-less 

ratio, the punctuation-less ratio, and the overall speed of the generated transcription. These 

metrics will help to demonstrate any weak points of the program, by being able to compare the 

unaltered score with scores that ignore capitalization or punctuation it can show problems with the 

algorithm that determines the text. In addition, knowing other metrics such as the speed of 

transcription and the wordcount will provide insight into if there are any problems with the 

generation of text itself. 

4.4 RESULTS 

For the results of this, the main focus will be on the speech-to-text system as this is an easier metric 

to demonstrate, however, similar improvements are reflected upon the video-to-text system as well.  

Initially, the untrained and unoptimized program chosen was good at creating small words and 

phrases, however for longer clips it failed to hold up over the timespan.  

 

Figure 3: Initial Testing Accuracy 

This initial accuracy is not very good, with a raw accuracy of only 2.5% being true to the human-

transcribed text. It can also be noted that the values that ignore case or punctuation are similarly 

low. This was the first trial of the program, and there was much to be done to improve this to the 

expected accuracy.  

After a few months of work, notable improvements had been made to allow more acceptable 

results. These improvements are discussed primarily in Section 5: Implementation, however, these 

improvements bring the raw accuracy up to 56.2%, a large improvement. Note that in this 

situation, there were major issues with the caseless rate in particular, leading to the belief that 

there are issues in the correct casing of the text received. 

 

Figure 4: Improved Testing Accuracy 

Finally, as the project nears its end, the last few parts have been tuned and provide what can be 

considered an acceptable set of results. These results have received a slight improvement, up to 

82.5% accuracy raw. There are still slight drops when ignoring case, which is something that will 

need to be considered in the overall implementation of the program. However, overall this program 

does reach rather high levels of accuracy and is able to consistently provide text that is searchable, 

the overarching goal of the Digiclips team.  



 

 

Figure 5: Final Testing Accuracy 

As stated at the beginning of this document, the goal for speech-to-text was to achieve at least 80% 

accuracy, which has been met by this criteria. Similar successes have been seen for video-to-text as 

well. After discussing both of these with the DigiClips team, they have approved of these metrics 

and as such we can consider acceptance testing for our system to be completed. After discussing 

with DigiClips about the low caseless ratio results, we were informed that most searches will not 

rely on having perfect case, and searches will be using different algorithms (such as fuzzy search) 

therefore having a lower case ratio is not critical and an acceptable loss. 

5 Implementation 

5.1  GENERAL IMPLEMENTATION 

Our implementation uses Python to build the microservices that will make up our app. Python 

enabled us to use cutting-edge OCR tools and speech recognition models. While it may not be as 

fast as other languages like C or C++, we think Python is a great solution because of the variety of 

machine learning applications available.  

To build our REST API microservices, we used the popular Python framework FastAPI. FastAPI 

offers a straightforward interface for building both simple and complex web APIs. There is minimal 

configuration and boilerplate needed to get a FastAPI web service up and running, which keeps our 

services slim and straightforward. The REST API structure enables our services to process requests 

simultaneously. Parallel processing helps our services process even more data within a given time. 

With FastAPI, the programmer doesn't have to create complex process management systems to 

facilitate parallel processing. The framework will handle everything automatically.  

5.2 SPEECH-TO-TEXT 

Our speech-to-text system uses the DeepSpeech library, developed by Mozilla using Tensorflow, a 

Python machine-learning library. Mozilla has gone to extreme lengths collecting thousands of 

hours of crowd-sourced voice recordings with their project Common Voice. They then use all this 

data to train their DeepSpeech recognition model used in our application. Using these existing 

libraries and systems enables our team to create an efficient and accurate application without 

collecting mountains of data and building custom machine learning models.  

An important consideration for our speech-to-text service is how data is sent into the DeepSpeech 

model. Sending in an entire 30+ minute audio file can strain the computer the service runs on and 

takes a long time. Our solution to this problem is to split audio input into roughly 20-second 

chunks before passing it into the recognition model. Through testing, we have discovered that 

DeepSpeech doesn’t work well when a lot of audio is passed in at once. It seems that 20 seconds is a 



 

good middle ground between having too many chunks to process and not losing data by inputting 

too much audio at once. Also, the chunks have a second of overlap on each side to ensure we don’t 

slice the audio in the middle of an important word.  

Another benefit of breaking the audio into pieces is that we can process each piece in parallel. 

Using the Pool data structure in Python’s multiprocessing library, each audio chunk is processed in 

parallel instead of looping through them sequentially. We sped up our speech-to-text processing by 

nearly 20% using this method. 

One downside to using DeepSpeech is that we don’t get any data on when a certain word was 

detected in the given audio clip. The model takes in audio clips and returns only a detected text 

string. Since our client wants to search through the output and find where a word occurs in a 

certain video, it would be great to link a word to a timestamp in the video it came from. We found 

that linking an individual word wasn’t very feasible; however, using the chunking method 

described above, we can package each piece of text with some metadata to describe the file the text 

came from and the time frame within that file. Since we split audio into roughly 20-second chunks, 

we can associate each chunk of text with a 20-second time window in a given file. 

The generated data is formatted JSON, packaged with the video text recognition data, and returned 

to the user.  

5.3 VIDEO-TO-TEXT 

The video-to-text portion of our system utilizes OpenCV image processing library alongside 

Google’s TesseractOCR to successfully extract visual text from individual frames of a news 

broadcast video. Our final implementation exists as a full-fledged API able to receive a video file 

and output a JSON-formatted list of extracted text along with their corresponding timestamps. The 

system is primarily a pipeline that opens the given file path, verifies that the file is a video, then 

proceeds to extract the necessary frames from the video before passing them through to the text 

detection functions. To limit the processing time and resources necessary for image processing 

tasks, we have opted to only perform image processing and optical character recognition on certain 

frames of the video. After considering many sample videos, we concluded that the likelihood that 

text would appear on screen for only a fraction of a second is extremely minimal and based on this 

conclusion we decided to only scan one frame for every second of video. This delay between 

processed frames is configurable to the user, so if our client chooses in the future that they would 

rather have every single frame processed, they can. 

The system reads in a video file using OpenCV’s VideoCapture object and begins to step through 

the video frame-by-frame. As each frame is passed, a counter keeps track of the frame’s location 

relative to the beginning of the video which, along with the framerate of the video, is used to 

determine the frame’s timestamp to be paired with the text output. Some image preprocessing is 

performed on each frame such as binary thresholding, image dilation using a kernel optimal for 

conjoining nearby text characters, then finally filtering remaining contours in the image based on 

their size and aspect ratio to determine which objects in the frame are most likely to be text. This 

serves to highlight the contrast between text and background and in the vast majority of cases 

removes noisy objects from the image that make text detection troublesome and isolates the text 

within the frame for easier processing. After pre-processing, the frame is passed into Google’s 



 

TesseractOCR, a free and open-source optical character recognition library, which extracts text 

from the image and parses it into a string. 

Once the Tesseract output is received, some minor post-processing is performed to trim 

whitespaces, eliminate excessive punctuation, and check words for spelling errors. Finally, the 

frames are run through a duplicate filtering algorithm that attempts to identify neighbor frames as 

one “segment” of a frame being visible. If, for example, the same text is visible on screen for five 

consecutive frames, the client would rather store that text as a single instance with a generated 

start timestamp and end timestamp rather than five instances of single-frame timestamps. To do 

this, the program utilizes an algorithm that compares a frame to its predecessor, using Damerau–

Levenshtein distance to determine the likeness of the two strings. The algorithm continues 

comparing subsequent frames until it reaches a frame that does not meet the likeness requirements 

specified in the configuration files. 

After completing duplicate filtering, the array of timestamp-indexed string objects is returned in a 

JSON-formatted output to the driver microservice, which packages its contents alongside the 

output from the speech-to-text microservice and passes the results to the original requestor.  

5.4 DRIVER MICROSERVICE 

The last microservice we created was the driver microservice. This microservice helps to simplify 

the use of our application. Instead of making requests to the speech-to-text and video-to-text 

services individually, the user only must send a request to the driver microservice. The driver will 

make requests to both the speech service and video service in parallel, package the resulting data 

together and return it to the user. This also helps with our application’s security because the users 

don’t have direct access to the speech or video services. This provides a layer of separation between 

the user and the main processes of our application.  

5.5 DOCKER 

Another important aspect of our project implementation is our use of Docker. Since we have three 

different microservices described above that make up our application, things could get messy 

trying to ensure they are all running, and all dependencies are installed to operate each service 

effectively. We also need to ensure they can all communicate effectively while ensuring users 

cannot directly access the speech and video services. Docker solves both problems incredibly 

effectively.  

First, Docker makes the whole application portable. All the dependencies and setup for each service 

are contained within the Dockerfile. Thus, the only software a user would have to install to run our 

code is Docker. Then, each service can be built into a Docker image using the provided Dockerfile 

and then run within a container. Instead of installing DeepSpeech, OpenCV, Tesseract, and all the 

other dependencies our project requires, we use Docker to automatically install all of that within a 

container. Using Docker, we got our code running on our client’s machine with only a few console 

commands and no messy dependency installation.  

Docker also solves our networking problem. We want the speech and video services to be only 

accessible by the driver service. Using Docker Networks, we put all three containers into their a 

network so they are effectively in a bubble where they can’t be accessed by something outside the 



 

network. The driver microservice has its port 5000 mapped to port 5000 on the host machine, 

which serves as our one access point to the application.   

Overall, Docker reduces many of the pain points of setting up an application like this to nothing 

more than a few console commands. Once all the containers are running, they can be paused and 

resumed with ease, and none of the software installed in each container affects the other programs 

running on our client's computer. If for whatever reason, someone wants to stop the application 

and uninstall it, the containers need to be deleted, and it will be as if they were never there.    

6 Closing Material 

6.1 CONCLUSION 

Our team has worked closely with DigiClips to create and develop an initial plan to complete the 

project we have been assigned. Our goal is to create an element of speech-to-text and video-to-text 

that will use self-developed and open-source software, which will in the end be incorporated into 

the DigiClips overall system, allowing them to translate any television recordings into something 

that is searchable using their own search engine. Currently, after doing research and different 

testing on each element, the best plan of action that we currently have is to develop each element 

individually, test the element that was created, then incorporate them into one product which can 

be used by the system in place at DigiClips. This solution, using python with different open-source 

software, will be the most reliable option with the given requirements.  
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6.3 APPENDICES 

Appendix I: Operation Manual 

Docker 

Docker can be installed here: https://docs.docker.com/get-docker/  

Docker is used to package each application into it's own mini virtual machine. This ensures that 

each application will be isolated from the host as much as possible while running. This project uses 

Docker to vastly simplify the process of getting the applications running with all appropriate 

dependencies installed. 

An up to date install of Docker is all that is needed to run the applications. 

Docker is not absolutely necessary to run the applications, but it does simplify the process. If a 

python 3.7 environment is available with all necessary dependencies installed the applications 

should be able to run fine using either uvicorn or the default FastAPI server. 

Setting up the speech-to-text application 

To setup the speech-to-text (stt) application first install Docker locally using the link above. Once 

Docker is installed pull the latest commit of this repository to your local machine and you will be 

ready to build the application. 

First, we need to setup the network that our containers will use to talk to each other. To do this 

open a terminal or command prompt window and run the following command: 

docker network create toText 

This command creates a network called toText. This name can be whatever you want as long as it 

remains consistent throughout the rest of the setup. 

Next, navigate to the main repository folder and then into the stt folder. There are some files that 

need to be downlaoded into the models folder of the repository. To use Deepspeech we need two 

files, the model file and the scorer file. Those files can be downloaded here:  

Model: https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-

models.pbmm  

Scorer: https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-

models.scorer  

Download these two files and put them into the models folder in the stt folder. 

 

We also need the model file for the punctuator. This file can be accessed in a Google Drive hosted 

by the library's creator at this link: 

https://drive.google.com/drive/folders/0B7BsN5f2F1fZQnFsbzJ3TWxxMms?resourcekey=0-

6yhuY9FOeITBBWWNdyG2aw 

https://docs.docker.com/get-docker/
https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.pbmm
https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.pbmm
https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.scorer
https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.scorer
https://drive.google.com/drive/folders/0B7BsN5f2F1fZQnFsbzJ3TWxxMms?resourcekey=0-6yhuY9FOeITBBWWNdyG2aw
https://drive.google.com/drive/folders/0B7BsN5f2F1fZQnFsbzJ3TWxxMms?resourcekey=0-6yhuY9FOeITBBWWNdyG2aw


 

 The file to download is named Demo-Europarl-EN.pcl. Place this file in the models folder too. 

Now, run the following command: 

docker build -t stt . 

This command builds a docker image using the Dockerfile in the stt directory. The Dockerfile 

provides the instructions to build the right container for the app. Also, in the above command the -

t flag denotes the name of the image we are creating. So if you don't want the name to be 'stt' then 

change it to whatever you like. But keep in mind you'll have to remember this name later. 

Now that we have the image built we are ready to run the image in a container. To start it up run 

the following command (with a couple changes based on your setup): 

docker run—net toText --mount type=bind,source=/path/to/files,target=/test/audio --security-opt 

seccomp=unconfined --name stt -d stt 

This command creates a new container named 'stt' and runs the image 'stt' inside it. The --name 

flag set the name of the new container that is being created. Here we set it to 'stt' the same as the 

image name. 

The --mount flag creates a link between a folder on the host (the computer docker is running on) 

and the container file system. This is useful since all the Digiclips recordings are stored on the linux 

filesystem. This path will be different depending on where the files you want to process are on your 

computer. The target is the location in the container's file system that we will link to.  

The –net flag links this container to the network we created earlier. This will ensure all the 

containers can communicate within their own network. 

The --security-opt flag is a little more complicated. Essentially, Docker enables a security option by 

default that protects against Spectre attacks. This security option causes performance issues with 

CPU-intensive processes like our application. This option disables that security option in the 

container so the performance is not affected. This does increase the applications vulnerability to 

Spectre attacks but at this time there is no other solution without affecting performance. 

Now the speech-to-text service is up and running! We can let it run while we setup the other 

services. Next we will run the video-to-text service. 

Change your terminal working directory to the vtt folder and run the following command: 

docker build -t vtt . 

This command will build the video-to-text service similar to the speech-to-text service above. 

docker run --net toText --mount type=bind,source=/path/to/files,target=/test/audio --security-opt 

seccomp=unconfined --name vtt -d vtt 

This command runs the video-to-text service the same way we ran the speech-to-text service. Now 

two out of three services should be running. 

Change your terminal working directory to the driver folder and run the following command: 



 

docker build -t driver . 

Now we build the driver microservice. 

docker run -p 5000:5000 –net toText--name driver -d driver 

And we run the driver microservice. This service doesn’t need access to files and isn’t processor 

intensive so we don’t need as many flags. The flag -p links a port on the host machine to a port on 

the container. The Python API inside the container uses port 5000 so for simplicities sake we will 

link port 5000 on the host to 5000 on the container. All this really means is when we make requests 

to the application we will direct them to port 5000. 

Now that all three services are running, using either Postman, curl or some other method of 

making HTTP requests, make GET requests to http://localhost:5000/. You will also need a single 

URL param called ‘fname’ that points to the file to be processed. This will be ‘../test/audio’ + the 

name of the file. A complete request would look like the following: 

http://localhost:5000/?fname=../test/audio/test_file.mp4 

The application will process the request and response once it has finished. 

http://localhost:5000/


 

Appendix II: Code 

 

Figure 6: Speech-to-text Endpoints 



 

 

Figure 7: Video-to-text Endpoints 



 

 

Figure 5: Driver Endpoints 


